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Some classical and quantum theories are characterized within the convexity 
approach to probabilistic physical theories. In particularr the structure of the 
so-called DHB quantum theory will be analyzed. It turns out that the natural 
generalization of the standard Hilbert space quantum mechanics, the operational 
one, is such a theory. The operational Hilbert space quantum theory will be 
reconstructed from the (weak) projection postulate and the complementarity 
principle. This is then used to argue that the DHB quantum theory is identical 
with the operational Hilbert space quantum theory. 
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1. I N T R O D U C T I O N  

This paper  will cont inue the analysis o f  the foundat ions  o f  the quan tum 
theory started in (Bugajski and Lahti, 1980), hereafter  referred to as FPI.  
The quest ion posed  therein was to what  extent the s tandard Hilbert space 
quan tum theory  can be erected on its fundamenta l  principles: the superposi-  
t ion principle,  the uncertainty principle, and the complementar i ty  principle. 
With respect to careful formalizations o f  these principles within the general 
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Mackey axiomatics it was demonstrated that these principles are not enough 
to determine the standard theory. Thus, either (i) the three principles do 
not exhaust the foundations of the quantum theory, or (ii) the usual 
formulation of  the quantum theory is too specific to reflect properly the 
very ideas of  the theory. 

The standard quantum mechanics, though very useful, is highly ideal- 
ized. This becomes most evident from the fact that observables on the system 
described by the theory are represented as spectral measures, or as self- 
adjoint operators, on a Hilbert space. Consequently, measurements on the 
system, or interactions of the system with its environment, described by the 
theory are restricted to those which give rise to observables as spectral 
measures, only. This is connected with the foundational status of the von 
Neumann-Liiders  projection postulate in the standard formulation of  the 
quantum theory. For a long time such an idealized scheme has been known 
to be too restrictive. 

Thus the alternative (ii) above should be taken seriously. We follow 
here the proposal made in FPI that the very ideas of the quantum theory 
are most properly reflected in the more general DHB quantum theory, i.e., 
the quantum theory based directly on the superposition principle, the 
uncertainty principle, and the complementarity principle. It is the aim of 
the present investigation to analyze in detail the structure of such a theory. 

The structure of  the paper is the following. A sufficiently general but 
powerful theoretical framework is needed. Such a frame is provided by the 
so-called convexity approach to probabilistic physical theories, which is 
flexible enough to allow the formulations of the physical ideas important 
for the investigation at hand. This scheme, with its basic notions and 
structures, will be introduced in Section 2. In Section 3 we shall indicate 
how this general convexity scheme is further specified to provide physically 
interesting convex descriptions. Examples of  some convex descriptions 
which are typically Classical and typically quantal are there also given. In 
the following three Sections (4, 5 and 6) the three fundamental quantum 
principles are then formulated within the chosen framework and the basic 
properties, in particular the nonclassical features of the convex descriptions 
satisfying these principles are pointed out. The question on the interdepen- 
dence of  these principles is then considered in Section 7. In Section 8 we 
briefly return to the problem of characterizing classical convex descriptions 
with discussing some consequences of  the requirement for the unique 
decomposability of mixed states. In Section 9 we make use of the great 
flexibility of  the convex scheme in formalizing a measurement theoretical 
assumption called the projection postulate. This postulate, which is a 
remarkable weakening of the yon Neumann-Liiders postulate, formalizes 
here the rather acceptable assumption that some observables of  a physical 
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system concerned may admit  the so-called ideal first-kind measurements of  
their possible values. In Section 10 we are then finally in position to 
characterize quantum convex descriptions, and, in particular, the Dirac-  
Heisenberg-Bohr (DHB) quantum theories. We shall then argue that the 
DHB quantum theories are the operational Hilbertian descriptions which 
can essentially be based on the fundamental  complementari ty principle and 
on the measurement  theoretical idealization here called the projection 
postulate. 

2. THE GENERAL S C H E M E  

In this preliminary section we shall describe the basic notions and assump- 
tions of  the so-called operational or convexity approach to probabilistic 
(irreducibly or otherwise) physical theories. We prefer the term convexity 
approach as the adjective operational will subsequently be used to describe 
more specific structures. Moreover the term convexity is neutral with respect 
to some semantical or interpretative questions which are not relevant here. 
The general convexity scheme, CS for short, which will be sketched below, 
was formulated in the works of  Davies and Lewis, Ludwig and Mielnik. 
This scheme provides a framework for convex descriptions for some physical 
theories. We do not repeat all the physical and mathematical arguments 
which, during its development,  finally led to this scheme, but we refer the 
reader to the books of Davies (1976), Gudder  (1978), and Ludwig (1982), 
where also references to original contributions can be found. 

The basic notion of the scheme is state of  a physical system, and the 
basic operation is forming mixtures of states. We do not adopt  any particular 
operational interpretation of these basic notions here, in spite of  the fact 
that some of the terminology used below might remind the reader of  the 
so-called "beam semantics" or "ensemble interpretation" of  the approach.  
The approach followed here is general and it is not, from the outset, engaged 
to any particular interpretation. 

The set S of  all states of the system will be equipped with an algebraic 
structure which allows the distinction between the pure and the mixed states 
of  the system. Such a structure is that of a convex set. It is then a mathematical  
convenience to consider S as properly placed in a real vector space V. The 
set S defines a cone V+={Aa:  A ~ R  +, a c S}, which is a generating one: 
i.e., V = V + -  V +. S is a base for the cone V + of the real vector space V 
which is partially ordered by its cone: for any cr and /3 in V, cr _</3 iff (if 
and only if) /3 - a ~ V § The set S of  all states defines the strictly positive 
linear functional e on V such that S = { a  ~ V+: e ( ~ ) =  1}. This functional 
will be called the strength or intensity functional. Owing to the convex 
structure of  S the distinction between pure states, extreme elements of  S, 
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and mixed states, nonextreme elements of  S, can now be made. Ex(S) 
denotes the set of  all pure states in S. 

The physical interpretation attached to S can be extended to the positive 
cone V+: any Aa ~ V + with A e R + and a e S represents a new state of the 
system, obtained from a by changing its intensity or strength (or normaliz- 
ation). Thus original states (i.e., the elements of  S) will be distinguished 
as normalized states, whereas the term "state" will be extended over all 
elements of  V § including the "empty"  state to, the origin of  V. The linear 
operations (a, f l ) ~ a + ~ ,  ( h , a ) ~ h a ,  h > 0 ,  a, / 3 ~V  + preserve their 
original interpretations as mixing and intensity changing, respectively. In 
particular, the term pure state can thus refer to an element of Ex(S) or of  
Ed(V § :-- {ha: A E R +, a E Ex(S)}, where Ed stands for "edge." This 
extension will be accepted only as a mathematically convenient one, and 
it has no physical implications. There are also some attempts to avoid the 
linear structures of V (see, e.g., Gudder,  1978), but it is not of any particular 
relevance for our considerations. 

The base S defines also a natural seminorm [I. l] on V, []a [[ := inf{h ~ R +, 
a ~ h conv ( S u  - S ) } ,  which is additive on V + and I1~1[ = e(a) for a E V +. 
Assuming that also countable mixtures of  states can be formed, the seminorm 
[[. [I is actually a norm, the base norm, with respect to which the base normed 
space (V, S) is complete. We assume also the closedness of V § as it is a 
rather harmless mathematical assumption. Thus we get the basic assumption 
of the convexity scheme: 

(CS) The set of  states of  a physical system is represented by a norm closed 
generating cone V § of  a base normed Banach space ( V, S). 

Other elements of  the theory shall be defined on the basis of (CS) and will 
be specified according to the theory. 

A distinguished role is played by linear positive contracting mappings 
of V into V, i.e., positive elements of  the unit ball of L(V). Some of such 
mappings are assumed to represent elementary physical operations perform- 
able on the physical system described by  the theory. More complicated 
experimental arrangements are described by mappings from B(R)-- the  
Boolean lattice of  Borel subsets of  the real line R, into the set of  elementary 
operations. If  I: B ( R ) ~  L(V) denotes such a mapping, it is called an 
instrument, and assumed to represent an experimental procedure, iff: (i) 
I (X)  is an operation for any X ~ B ( R ) ,  (ii) e ( I ( R ) a ) =  e(a) for any a ~ V, 
(iii) I ( u  Xn) = Y, I(Xn) for any countable family {Xn: n ~ N} of pairwise 
disjoint Borel sets, where the sum converges in the strong operator topology. 
The notion o f  instrument is a straightforward generalization of quantum 
mechanical models of  experimental arrangements as discussed, e.g., by von 
Neumann. 
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For any operation q~ there corresponds a linear functional e(~b.) on V. 
Such functionals V ~  R are called physical effects. It is easy to see that 
effects are elements of  the order interval [0, e ] : = { a c  V*: O<-a<-e} of 
V*-- the  topological dual space of V, where 0 is the zero functional. The 
order here is the one induced on V* by the order on V, i.e., for any a, 
b ~ V*, a -  < b iff (b-a)(a)>_O for any a ~ V*. Similarly, if we apply the 
standard detector, symbolized by the strength functional e, after an instru- 
ment I: B ( R ) -  L(V) we get an effect-valued measure on the Borel space 
(R, B(R)), called an observable. Actually we can take arbitrary Borel spaces 
instead of (R, B(R)) as the value spaces of  instruments and observables. 
Our restriction to (R, B(R)) is not a serious one, since there are indications 
that the standard Borel spaces cover all the physically relevant cases (Davies, 
1976). 

The probabilistic character of the convexity scheme follows from the 
fact that each instrument-normalized state pair (I, a )  defines a probabili ty 
measure B ( R ) ~  [0, 1], X-~ e(I(X)a). Consistent with the interpretation of 
the numbers e (a ) ,  a c V +, the number e ( I ( X ) a )  is taken to describe the 
(physical) probabili ty that a measurement with the instrument I on the 
system in the state a leads to a result in X. 

The mapping  th ~ e(~b.) of  operations on effects defines an equivalence 
relation on operations, called isotony. Thus two operations ~bl and t~2 a r e  
isotonic iff the effects e(4~1.) and e(q~2. ) they cause are the same. This isotony 
relation can easily be extended to instruments, as well: Two instruments I1 
and 12 are isotonic whenever the observables A~ and A2 they define are the 
same. 

The order interval [0, e] c V* is convex and weak* compact.  The 
Kre in-Milman theorem says now that it possesses a set Ex[0, e] of  extreme 
points which is sufficiently rich to allow a weak* approximation of 
any element of  [0, e] by finite combinations of  elements of  Ex[0, el. 
Effects belonging to Ex[0, e] are called extreme effects (decision effects by 
Ludwig), whereas nonextreme effects will occasionally be called fuzzy 
effects. 

The space V is ordered by the cone V § defined by the base S. I f  this 
order is a lattice order, S is a (Choquet) simplex (Alfsen, 1971; Asimow 
and Ellis, 1980)--a  structure that has relevance for classical descriptions. 
I f  V = V §  V § is a vector lattice, then also its dual V* is a vector lattice. 
In this case the interval [0, e] is a lattice where, in particular, the greatest 
lower bound of any two elements a, b ~ [0, e] is given by (a n b) ( a )  = 
inf{a(a) ,  b (a ) :  a ~ V}. 

Thus in this special case we have the result 

if a ^ b = 0  then a-< e -  b 
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This fact will be useful later on. Let us note also that in this case the set 
Ex[0, e] is a Boolean lattice, with a --> a • := e - a as the orthocomplementa- 
tion (Schaeffer, 1974). 

3. EXAMPLES OF CONVEX DESCRIPTIONS 

In its generality the convexity scheme CS provides us only with a 
prestructure of  a physical theory. In particular, it is not specifically quantal 
nor classical, but the two types of theories can be formulated in terms of  
CS. The description of  any physical system within this scheme requires 
more specification. What we have to specify are the set of  states of  the 
physical system, and the set of admissible (physically relevant) operations 
on the system. The convex description (CD) thus arises in specifying the 
couple (So, 0o) which consists of  the sets So and Oo of  all (normalized) 
states and of all admissible operations of  the description D. CD denotes 
the family of  all convex descriptions. 

A convex description D will be called classical if So is a simplex, i.e., 
if the base normed Banach space (V~ So) generated by So is a Banach 
lattice. The family of  all classical convex descriptions will be denoted by 
CCD. Classical descriptions can be based on a measurement theoretical 
assumption, called classical ideal, according to which the mixing of  states 
results from ignoring some relevant physical conditions in preparing the 
state of  the system--a negligency which, in principle, could be eliminated. 

Nonclassical descriptions are not necessarily quantal. Quantal descrip- 
tions are distinguished by their ability to account for the physical fact of  
the existence of  the universal quantum of  action. When basing quantal 
descriptions on this fact we face the problem of how to incorporate the 
quantum of  action in the general scheme. The notion of  a quantum descrip- 
tion will be discussed in the following sections. The family of  such descrip- 
tions will be denoted by QCD. 

If  the set of admissible operations of  a convex description D is the set 
of  all formally possible operations on Vo the description D is called 
"operat ional"  or "fuzzy." The family of all such descriptions is denoted by 
OCD where O stands for "operational ."  In this case the set of  effects equals 
to the whole order interval [0, e] of V*. As the maximally large set Oo 
contains all the operations on the state space Vo the physical idea behind 
OCD is simply that it allows one to study all kinds of  physical influences 
on the considered system, which can be described within the approach. In 
particular OCD allows one to describe several kinds of  measurements (ideal, 
nonideal, first kind, second kind, etc.) on the system and, e.g., its inter- 
actions with "reservoir," etc. (see, e.g., Davies, 1976; Busch and Lahti, 
1985). 
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The other extreme of  the convex descriptions are those with "maximally 
restricted" set of operations as the admissible operations. With this we mean 
convex descriptions with the set of all admissible operations consisting of 
the so-called filtering operations (to be discussed in Section 9) together 
with some other operations, which give rise to the trivial effect e. The set 
of effects of  such a theory contains the extreme (nonfuzzy) elements of 
[0, e] only. The family of  such convex descriptions will be denoted as RCD, 
where R stands for "restricted." 

3.1. Classical  Convex Descriptions 

Classical theories of physics are based on several idealizing measure- 
ment theoretical assumptions which might collectively be called classical 
ideal The two best known of  such assumptions are the compatibility assump- 
tion and the assumption on the unique decomposability of mixed states. 
Intuitively, the compatibility assumption claims the order independence of 
any two measurements on the system, whereas the unique decomposability 
of mixtures--assumption UDM says that in our description of physical 
systems we have to refer to mixed states only when we ignore some relevant 
physical conditions in preparing the state of the system, and that this 
ignorance is, in principle, avoidable. In the convexity approach one begins 
with states as the primary concepts and with forming mixtures of states as 
the primary operation of  the theory. Thus it is the second of the two idealizing 
assumptions which now readily lends itself for a formalization. We shall 
comment the compatibility assumption and its relation to UDM further in 
Section 8. 

The assumption UDM has a twofold consequence on the set S of  all 
(normalized) states of the system: Firstly, the set Ex(S) of  pure (extreme) 
states in S should be sufficiently rich so that each state ~ in S can be 
expressed as a convex combination (countable or otherwise) of the elements 
in Ex(S);  secondly, this decomposition should be unique. This then allows 
one to say that if the system is in a mixed state a ~ S it is actually in one 
of its pure components ai ~ Ex(S), and the weights hi with which the pure 
states a~ participate the decomposition )~h~a~ describe our knowledge on 
the actual state of the system. Formally UDM thus requires the simplicial 
shape for S. This suffices to justify the conception of classical convex 
description: 

A convex description (V, S) is a classical convex description iff V is a 
lattice in the natural ordering. 

Thus for any ( V, S) ~ CCD S is a (Choquet) simplex. 
There are at least two representations of  this abstract structure which 

are of interest for physics: MR(l~)--the vector space of  regular countable 



1058 Lahti and Bugajski 

additive real Borel measures on a compact Hausdorff space ~ with the 
natural Banach structure of  the topological dual CR(12)* of the family 
CR(12) of  all continuous real-valued functions on 12; and L1(12, Ix)--the 
Lebesque space of  measurable functions on a tr-finite measure space (12, Ix). 
In both cases 12 represents the phase space (or its compactification) of  the 
corresponding classical theory. 

Any of  the two representations of ( V, S) could serve as a starting point 
for either operational or restricted classical descriptions. Thus two concrete 
elements of  OCCD ( : = C C D n  OCD) and two of RCCD(:=CCDc~ RCD) 
will be achieved. We shall now briefly comment on them. 

The classical state space MR(12) is naturally ordered by the convex 
cone of positive measures on 12. The positive cone MR(12) + is generated by 
the set MR(12)~- of  probability measures, which in the present approach 
represents the set of  normalized states of  the physical system concerned. 
The phase space 12 is here assumed to be compact and Hausdorff. The first 
assumption does not hold for usual phase space theories (where the phase 
space is taken to be the real Euclidean space R2"), so we would consider 
f~ rather as a compactification of the usual phase space. The concrete form 
of this compactification depends on the considered problems. The compac- 
tification which is natural for the operational approach is obtained as 
follows: We construct the set MR(12'), where 12' is the original locally 
compact phase space, and embed 12' into Ex(MR(12')**)~--the extreme 
boundary of  the base of  the base-normed Banach space MR(12')**. This is 
actually the Cech-Stone compactification of  IT. We thus have a compact 
Hausdorff phase space 12 and the state space M~(12) of  the convex descrip- 
tion. The set Ma(12)~-, i.e., the base of  M~(12), is a regular simplex and 
Ex(MR(I-I)~-) ~ 12 (Alfsen, 1971). The first property guarantees that UDM 
holds whereas the second property says that the pure states of the description 
can be identified with the points of the phase space. The order interval 
[0, e] of  MR(O)* contains the set of all positive measurable functions on 
12 less than the constantly one function, but is essentially larger than this 
set. All characteristic functions of Borel subsets of  12 can be naturally 
identified with extreme elements of [0, el, but the latter set contains other 
elements as well. Thus the convex scheme provides a rather unconveniently 
general frame. Anyway, the set [0, e] of  effects of the description is a 
complete distributive lattice with the property: if a ^ b = 0, then a --- b • = 
e - b for any two a and b in [0, e]. The mapping a ~ a • is however, not 
an orthocomplementation,  so that ([0, e], - , l )  fails to be Boolean, in 
general. In order to get the set of effects exactly equal to the set of  all 
characteristic functions of Borel subsets of  12 we have to restrict the set of 
possible operations. The standard way of doing this is to take ORCl as 
consisting of  all mappings ~bx, X is a Borel subset of  12, defined by 
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a(&x (a))  := Sx a da for any a ~ MR(12) 1~ and any bounded measurable 
function a on f~. Such operations are just conditionalizations of  the standard 
probability theory, so that the pair (MR(f~, ORCl) belonging to the class 
RCCD can be viewed as the convex description of classical probability 
theory. If  we add to ORCl operations which correspond to canonical transfor- 
mations of ~ we get the set ORC2, which together with Ma(12) + could be 
considered as the convex description of classical statistical mechanics. The 
description specified by the couple (MR(EI)~-, ORC2) belongs also to the 
family RCCD. In order to describe classical open systems we have to admit 
a larger set of operations than ORC 2. The natural choice is just the whole 
set Ooc of positive linear contracting transformations on MR(f~). This leads 
to the pair (MR(12)I, Ooc) generating a specific operational classical 
description, which is basic for classical mechanics of open systems. This 
kind of description is a typical sample of the class OCCD. 

Other examples of classical convex descriptions arise if we take the 
Lebesque space LI(fl,/Z) as the state space. L~(12,/z) consists of all essen- 
tially bounded tz-integrable real functions on the phase space f~ defined up 
to set of /z-measure  zero. It carries the natural structure of base normed 
Banach space with the standard strength functional e(a) := S a d/z for any 
ce C LI(~'~ , /z ) .  It is a lattice with respect to the pointwise ordering, so its 
base LI(~,/Z)~- is a simplex. In the typical case of l) = R  2n and/z  being the 
Lebesque measure A, there are no pure states: Ex(LI(R 2n, A)~-) is empty. 
Such a state space could be considered as the restriction of MI~(12) to the 
measures absolutely continuous with respect to some fundamental measure 
Iz. The model for classical statistical theory based on L~(f~,/z) has frequently 
been advanced; see, e.g., Primas, 1981. An advantage of this approach is 
that Ex[0, e] c L1(12,/Z)*[=L~(12,/Z)] consists only of characteristic func- 
tions of Borel subsets of l~ modulo the subsets of /z-measure  zero. Thus 
the effects corresponding to ORC~ exhaust the set of all extreme elements 
of [0, e], and the same holds for ORC2- We have thus two more examples 
of descriptions in RCCD (defined by the pairs (LI(EI,/z)+, ORCl) and 
(LI(O,/z)~,  ORC2))-The corresponding description in the family OCCD is 
defined by the pair (L~(I-I,/z)I, Ooc). The description of  classical systems 
based on L~(f~,/z) is in fact most general, as any base normed Banach 
lattice (AL space) can be represented as L~(I-I,/z) for some locally compact 
measure space (~ , / z )  [the Kakutani theorem; see Schaeffer (1971) or 
Asimow and Ellis (1980)]. 

3.2. Quantum Convex Descriptions 

Quantum theories of  physics are based on the physical fact of the 
existence of the universal quantum of action, symbolized by the Planck 
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constant h. Classical theories of physics are idealizations which can be 
unambiguously applied only in the limit where all actions involved are large 
compared with the quantum. Though h > 0 or h = 0, exclusively (physical 
actions cannot have negative values) there is no obvious way to characterize 
quantum convex descriptions. Such descriptions should not belong to the 
family CCD of  classical convex descriptions, but this is not enough to 
provide a characterization of  quantum descriptions. The problem of  incor- 
porating the physical fact "h  > 0" into the scheme is highly nontrivial, and 
it will be discussed subsequently. What we shall do now is to list some 
examples of  theories which are surely of quantal nature so that they should 
belong to the family o f  QCD. 

A large class of  working quantum theories fits into the following scheme: 
Let V(A) be the real part of  the predual Banach space of a W* algebra A. 
V(A) carries as a natural structure that of  the base normed Banach space 
with the base S(A) consisting of  all ultraweakly continuous positive normal- 
ized functionals on A. The Banach dual V(A)*, being an order unit Banach 
space, can canonically be identified with the self-adjoint part of A, with 
the unit of  ,a, as the strength functional e and the complete orthomodular,  
semimodular lattice of projection of A as the set of extreme effects Ex[0, e]. 
It is worth noting that (V(A)*, e), which is an ordered linear space, is not 
a lattice except the case of  commutative A. Nevertheless, Ex[0, e] is a 
complete lattice with respect to the induced order (Primas, 1981). With a 
fixed (V(A), S(A)) we again meet the problem of deciding which elements 
of  L(V(A)) will be considered as describing physically admissible operations 
on the system. According to our division we get the operational and restricted 
variants of the scheme, or one of the intermediate cases. 

In W*-algebraic theories there is a distinguished class of operations 
which correspond to the ideal first-kind measurements. This class, which 
leads to a restricted description, can be defined as follows. Let a c 
Ex[O, e] c V(A)*, so that a is a projection of  A. We define ~b* ~ L(V(A)*) 
by b --> ~b*b := aba, and ~ba ~ L ( V ( A ) ) ( , b * b ) ( a ) : =  b(ch,,a) for any ot ~ V(A). 
It is easy to see that ~ba is positive and of  norm less than 1. Moreover ~ba 
belongs to the isotony class of  a: e(~baa) = (~b*e)(a) = (aea) (a )  = a (a ) .  It 

ORWl := {~b~: a c  is clear that the operations belonging to * Ex[0, e]} are 
analogous to conditionalizations, so that the theories described by 
(S(A), O*RWl) could be considered as noncommutative probability theories 
based on W* algebras, cf., e.g., Gudder  and Marchand, 1972. If  we supple- 
ment the set of admissible operations by those corresponding to unitary 
transformations on the Hilbert space underlying the concrete representation 
of A as a von Neumann algebra, we get the pair (S(A), O*RW2) which is 
fundamental for many physical theories. For a review and discussion of 
such W* theories see Primas, 1981 and Emch, 1972. 
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An important property of any W* theory is that there is a natural 
bijection between the set of all Ex[0, e]-valued measures on R 1 with compact 
supports and elements of V*. This is the content of the spectral theory for 
W* algebras (see, e.g., Alfsen and Schultz, 1976). This spectral property 
justifies the name "algebra of observables" for A. In the case of generalized 
probability theory A is the algebra of random variables. 

A W* theory with commutativen A is classical. An example of such a 
theory is the one based on (L~(Y~,/z) +, ORCl) discussed above. W* theories 
with noncommutative A are considered as quantal, partly because A can 
be realized as a v o n  Neumann algebra of operators acting on a complex 
Hilbert space, which makes it possible to construct the whole traditional 
machinery needed for concrete calculations. A paradigm of such a theory 
is the standard quantum mechanics, where ,a, is just the yon Neumann 
algebra L(H) of all bounded linear operators acting on a complex separable 
(generally infinite dimensional) Hilbert space H. In this case V(A) is the 
space of all self-adjoint trace class operators with the trace norm and S(A) 
consists of  the positive trace class operators of  trace one. The operations 
~ba, a ~ Ex[0, e] c V(A)*, are exactly the filtering operations discussed by 
the standard measurement theory, and the existence of the unique ~ba for 
any a is more or less the content of the yon Neumann-Liiders projection 
postulate, to be discussed subsequently. 

Noncommutative probability theories (S(A), O~wl) as well as quantum 
W* theories (S(A), O*RW2) refer to isolated physical systems, or at most to 
systems coupled to environment in a very special way. Quantum open 
systems are described by theories (S(A), O*ow) with noncommutativen A, 
where O*ow is the set of  all linear positive contracting transformations on 
V(A). Like the classical operational descriptions, the extension of the set 
of admissible elementary operations to O~w introduce fuzzy effects rep- 
resented by nonextreme elements in [0, e] c V(A)*. The set of  Rl-based 
observables with compact support is now "larger" than A because of 
fuzzy-effect-valued (or semispectral) measures. The operational W* theories 
with noncommutative ,a, are quantal members of the family OCD. For 
A = L(H) we get the operational Hilbert space quantum mechanics (Davies, 
~976; Gudder,  1978). Owing to their special importance we introduce the 
families CDoH Q and CDsHQ of operational Hilbert space quantum 
mechanics and its restricted variant, the standard Hilbert space quantum 
mechanics. 

4. COMPLEMENTARITY 

Experimental arrangements which permit unambiguous (operational) 
definitions of  complementary observables are mutually exclusive. This intui- 
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tive idea of Pauli arid Bohr was followed in (Lahti, 1980a) to define 
complementary observables in the Hilbert space quantum theory as well as 
in the more general quantum logic approach. However, in those approaches 
the notion of complementary observables has no explict reference to the 
mutual exclusiveness of the corresponding experimental arrangements. In 
the present scheme, where observables are defined through instruments, 
this connection can be made more explicit. 

Each instrument I: B(R)-->O, X - I ( X )  defines an observable A: 
B(R)-->[0, e], X ~ A ( X )  through the probabilistic relation e(I(X)a)= 
A(X)(a)  for any a ~ V, X ~ B(R). Moreover, each observable is determined 
in such a way by at least one instrument. Through its operations such an 
instrument characterizes an experimental arrangement which can be used 
to measure all the possible values of the observables, or which serves to 
define unambiguously the observable. Actually, for each A there corresponds 
a unique family (an isotony class) of instruments I~, i c I(A) = a suitable 
index set, which contains all the possible measurements of A, i.e., A- 
measurements which are describable within the scheme as operations. 

Let I A, i ~ I(A), and I~, j 6 I(B), be any two instruments associated 
with the observables A and B, respectively. The operations I~(X) and I~(Y), 
X, Y~ B(R), describe some particular measurements of A and B; e(IA(X)a) 
being the probability that a measurement of A, with the instrument I~ on 
the system in the state a yields a result in X. Assume now that there exists 
an operation ~b such that e(~ba)--- e(I~(X)a) and e(~ba)-< e(I~(Y)a)  for 
any state a. Such an operation, when applied, gives us (probabilistic) 
information which is potentially contained both in the operation I~(X) .and 
IF(Y), too. I t js  a joint measurement of the observables A and B, associated 
with the value sets X and Y. (For further analyses of the notion of joint 
measurement within the convexity scheme, see Busch and Lahti, 1984.) 
Intuitively, it is the lack of such measurements that the notion of complemen- 
tarity aims at characterizing. This then leads to the following definition (cf. 
Lahti, 1980a): 

(C) Observables A and B are complementary iff 1.b. {A(X), B( Y)} = {0} 
for any bounded X and Y in B(R) for which A(X) ~ e ~ B(Y). 

Here 1.b.{.,.} denotes the set of lower bounds of the elements in question 
in the relevant poset. The restriction to nonmaximal elements allows the 
possibility that also bounded observables, i.e., observables with bounded 
value sets, might be complementary. The restriction to bounded sets, on 
the other hand, can be motivated by considering operational definitions of 
observables. In fact, closed intervals would already suffice here. If  A and 
B are complementary observables then any two instruments I A, i ~ I(A), 
and Iy, j ~ I(B), are mutually exclusive, i.e., 1.b. {I~(X), IF( Y)} = {0} for any 
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two b o u n d e d  X and y in B(R) for  which nei ther  I ~ ( X )  nor  I ~ ( Y )  is maximal .  
Also the converse  holds true,  i.e. if any two ins t ruments  I~, i e I (A) ,  and  I~, 
j ~ I (B)  associa ted  with A and B are mutual ly  exclusive, then A and B are 
complementa ry .  Indeed ,  if  for  given two effects a and b, like A ( X )  and  
B(Y) ,  X, Y ~ B ( R ) ,  there exists an effect c which lies be low them,  i.e. 
ccl.b.{a, b} then, for  any ~ c B ,  the opera t ion  ~b~:/3~--~ the(/3) := c(fl)a lies 
be low the opera t ions  ~b~ and tb b, i.e. ~b~ ~ 1.b.{qS], qSb~}. As 4~, = 0 only if 
c = 0 the above  claim is hereby  justified. This shows that  within the present  
app roach  the not ion of  complementa r i ty  o f  observables  can directly be  
based  on the not ion of  mutual  exclusiveness of  the defining instruments .  

(CP) A convex  descr ipt ion (S, O) satisfies the complementarity principle if  
there exist, at  least, two noncons tan t  observables  which are com- 
p lemen ta ry  to each other. 

CDcp  denotes  the family of  such descriptions.  C D c p  is not  empty  as 
CDsHQ c CDcp.  The two most  characterist ic  proper t ies  of  convex descrip-  
t ions al lowing complemen ta ry  observables  are given in the fol lowing two 
results. 

Theorem 1. I f  A1 and A2 are complemen ta ry  observables  then 11 o 12 # 
12 ~ I1 for  any  two instruments  11 and 12 which define these observables .  

Proof Recall  first that  two opera t ions  ~bl and  ~b2 commute  weakly  iff 
(i) e o (~bl o ~b2) = e o (~b2 o i f ) l ) ,  and strongly if  (ii) ~b~ o ~b2 = ~b2 ~ ~bl. Clearly,  
(ii) implies (i). Recall  also that  for  any two opera t ions  ~bl and ~2, 
e o (~bl o ~b2) -< e o ~b2. Let A1 and A2 be complementa ry .  Suppose  that  I~ and 
I2 commute :  I1 ~ I2 = I2 o I~, i.e., I I ( X )  o I : ( Y )  = I2(Y) o I I ( X  ) for  any two 
X, Y C B ( R ) .  Thus for  every X, Y c B ( R )  we have eo(Ii(X)oIz(Y))= 
e o (I2(Y) o I I ( X ) ) ,  but  also e o ( I I ( X )  o I2( Y))--- e o I2(Y) and 
e o (12(Y) o I~(X))-< e o I I ( X ) .  Thus for any b o u n d e d  X, Y c B(R) [for which 
I I ( X )  and  I2(Y)  are not maximal ]  e o ( I I ( X )  o 12(Y)) = e o (I2(Y) o I I ( X ) )  = 
0. Let I = I 1  o 12 (=I2o  I~) be the composed  ins t rument  (Davies  and Lewis, 
I970). Thus  for  every X, Y~ B(R),  I ( X  • Y) = I~(X)  o I2(Y) = I2(Y) o I I ( X ) .  
Let (I ,m) fo rm a disjoint cover  for  R •  with I,m = X ,  • Ym, X,,  Ym c B(R).  
Now we have e = e o I (R x R) = e o I ( u  I,,~) = e o (~. I ( I ,m))  = Y  e o I ( I ,m)  = 

e o ( I1(X,)  ~ 12(Ym)) = 0. But this is a contradict ion,  establishing the claim 
of  the theorem.  

Accordingly,  the exper imenta l  a r rangements  which permit  the unam-  
biguous definit ions of  complemen ta ry  observables  are not  only mutua l ly  
exclusive but  also noncommuta t ive .  Hence  the result o f  an order  measure-  
ment  of  c o m p l e m e n t a r y  observables  depends ,  in general ,  on the order  in 
which the cor responding  exper imenta l  a r rangements  are appl ied,  a fact  
which seems to be widely accepted.  
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Theorem 2. If (S, O) ~ CDcp then there exist at least two effects in [0, e], 
say, a and b, such that a ^ b = 0, a ;~ e - b. 

Proof Assume that if a A b = 0 then a -< e - b for any two effects a and 
b in [0, e] and let A and B be complementary. Thus A(X) -< e -  B(Y) for 
any two bounded X, Y c  B(R) [for which A(X)  ~ e # B( Y)]. Let (I , )  form 
a disjoint bounded Borel cover for the real line R. Now for any n e N, 
A(I.)--- e - B ( Y )  for any bounded Y~ B(R) [for which A(I .)  # e ~ B( Y)] 
showing that A( u ~ I . )  = Y~ ~ A(I .)  -< e - B(Y) for any natural number N. 
Hence e = lira Y.1 n A(I .)  --- e - B ( Y )  for any bounded Y~ B(R), for which 
B(Y) ~ e. But this is a contradiction, closing the proof  of  the theorem. 

Loosely speaking, this theorem shows that whenever we have com- 
plementary observables we also have disjoint effects which are not 
"orthogonal ."  When confronting this result with the fact that disjointness 
implies orthogonality in simplicial cases we also have the following: 

Corollary 3. If  (S, O)~ CDcp then S cannot be a simplex. Moreover 
CDcp ~ Q and C D c p n  CCD = O. 

5. S U P E R P O S I T I O N  

States are the undefined axiomatic elements of the convexity scheme 
whereas its primary operation is the formation of mixtures of states. The 
state space is a linear space where the linearity reflects the idea of mixing 
states. It is, however, well known that there exists an important class of 
experimental conditions under which one observes (quantum) effects, e.g., 
interference effects, which cannot be understood on the above basis only. 
Some additional constituent is needed, and this is the superposition prin- 
ciple. After Dirac's monumental  work (1930) this principle has been con- 
sidered as one of  the most important constituents of quantum descriptions. 
The Diracian tradition is very strong and it is closely followed in several 
well-known texts. 

To underline the difference between the standard approach and the 
present one, we recall that in Dirac's approach the formulation of  the 
principle of  superposition led to the requirement of the linearity of  the state 
space, too. An adequate analysis of some experiments which support this 
principle is given in Gerjuoy (1973); see also Badurek et al. (1983) and 
Summhammer et al. (1983). 

The superposition principle as formulated in standard quantum 
mechanics assumes that pure states of an elementary quantum system are 
represented (up to a phase factor) by vectors of a complex Hilbert space 
H, and it ascribes a fundamental physical meaning to the linearity of  H. 
In the corresponding operational description (see Section 3.2) the Hilbert 
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space H does not appear explicitly. It is based on the real vector space of 
self-adjoint trace class operators on H equipped with the trace norm. This 
space shall be denoted as V(H). The set Ex(V(H)I )  of  extreme elements 
of the base V(H) + for the cone V(H) + is in a one-to-one correspondence 
with the factor set H / - ,  where - is the relation ~b ~ ~b iff 4~ = ~O e i~ for 
some real A, with ~b, qJ ~ H. The relation ~ is not congruent with the linear 
structure of H so that the operation of  superposing states cannot be 
expressed as a mapping Ex(V(H) ~-) • Ex(V(H) ~-) ~ Ex(V(H) +). The same 
difficulty plagues the quantum logic approach, as well as any other general 
scheme which does not start with an underlying Hilbert space housing the 
pure states of the description. 

Following the quantum logic approach (see FPI and references therein) 
the notion of superposition could now be defined as follows: A pure state 
a ~ Ex(S) is a superposition of pure states 0~1, a 2 C Ex(S) iff a ( o t l )  = a(a2) = 
0 implies a(a)= 0 for any extreme effect a 6 Ex[0, e] c V*. This definition 
should be modified in a few aspects. Firstly, as any effect can be weak* 
approximated by convex combinations of extreme effects, we do not need 
to restrict ourselves to extreme effects. Without changing the notion of 
superposition we can refer to a broader class of effects. The notion of 
superposition of  states does not depend on the "degree of fuzziness" of the 
description. Secondly, there is no need to consider normalized pure states 
only. In the convexity scheme a physical meaning can be attached to the 
whole positive cone of V, so that the assumption of normalization could 
simply be removed. Finally, the preliminary definition can easily be extended 
to describe superpositions of arbitrary sets of  pure states. Thus we get the 
following: 

(S) A pure state a ~  V + is a superposition of a set W c E d ( V  +) of pure 
states if[ a (fl) = 0 for all/3 E W implies a (a)  = 0 for any effect a of the 
description ( V, S) (provided that the extreme elements of  [0, e] c V* 
belong to the set of  admissible effects). 

A leading idea of the convexity approach is to construct the whole theory 
on the convex set of (normalized) states S. Hence it might be more elegant 
to formulate the notion of superposition of  states in terms of geometry of 
S only, without any reference to effects. This can easily be done. Any 
a~  [0, e] defines a (w-closed) hyperplane, a-~(0), and vice versa: any 
w-closed hyperplane which does not intersect the interior of V + can be 
considered as a-l(0)  for some a ~ [0, el. A closed hyperplane M c V will 
be called supporting (for V +) if M n V + = ~ or V+\M is still convex. The 
intersection of a supporting hyperplane M and the convex positive cone 
V + is a face of  V +, i.e., a convex subset F of V + such that hal  -t- (1 - h )a2 E F 
for al, a2 ~ V +, h ~ [0, 1] if[ a~, a2 ~ F. The face M n V + is called an exposed 
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face of  V +, and an intersection of any family of  exposed faces is called a 
semiexposed face. The smallest semiexposed face of V § containing a set 
W c  V § will be denoted by F (W) .  A physical interpretation of these notions 
is discussed by Mielnik and R/ittimann; faces are related to properties of 
the physical system in question (Mielnik, 1969), whereas exposed faces are 
related to detectable properties of the system (R/ittimann, 1981). The above 
discussion suggests the following definition: 

(S') A pure state a ~ Ed( V § is a superposition of  a family W c  Ed( V +) of 
pure states iff a belongs to F (W) ,  the smallest semiexposed face of  
V § containing W, but does not belong to W. 

Note, that all mixtures of  a family W c  V § are contained in the w closure 
of the set Lin+(W) of  all linear combinations with nonnegative coefficients 
of  the elements of W. If  W contains only pure states, i.e., W c  Ed(V+), 

w 

then the w closure Lin§ of Lin+(W) is also contained in the semiexposed 
face F ( W )  generated by W. The elements of F ( W )  which are both mixturds 
and superpositions of W will be called trivial superpositions. Obviously, if 
a is a trivial superposition of  W, then there is an al ~ wr~ such that a = hal  
for some positive h. Thus we can see F ( W )  as containing the set of all 
superpositions as well as mixtures of elements of  W. It is obvious that the 
superpositions produced by W c  Ed( V +) are determined by the set W. They 
do not depend on the order of elements of W nor on different clusterings 
of W. Thus the forming of  superpositions is "symmetric" and "associative" 
so that the notion of superposition enjoys the properties (2c), (2d), (2e) 
considered in (Lahti, 1985). It does not need to satisfy, however, the property 
(2a), which in the present approach is equivalent to (2b), i.e., it is not 
guaranteed that the set {a, co} for arbitrary a ~ Ed( V +) produces only trivial 
superpositions. This is due to the fact that the ray {ha: h ~ R +} for a 
Ed(V § is not necessarily a semiexposed face of V § Simple examples 
illustrating this fact can easily be invented (see, e.g., Alfsen and Schultz, 
1976, Fig. 1.p. 1.). On the other hand this " idempotency property" for quantal 
superpositions is of a fundamental nature, and it should hold in convex 
descriptions of quantum systems. We shall incorporate this property into 
the "convex"  form of the principle of superposition of states. 

As concerns the superposition principle, it seems that the principle 
should state, in its weakest form, simply the existence of superpositions of 
states. A stronger form, valid only for elementary systems (without super- 
selection rules) should state that any pair of  different pure states produces 
nontrivial superpositions (cf. FPI). Thus we have the following: 

(SP) (i) For any pair of  pure states a l ,  a2~Ed(V+)\{w} there exists a 
pure state a ~ Ed( V § which is their (nontrivial) superposition, 
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i.e., a does not lie in the rays generated by a~ and a2, but belongs 
to F ({a,, a2}). 

(ii) No pair {a, w}, a ~ Ed(V+), produces nontrivial superpositions, 
i.e., F({a}) = {ha: h ~ R +} for any a c Ed(V+). 

CDsp denotes the family of convex descriptions which satisfy the superposi- 
tion principle. Obviously, any Hilbertian description (V(H),  V(H)~) 
satisfies this principle so that the family CDsp is not empty. 

The given form of the superposition principle, which is merely a 
reformulation of the one considered in FPI, differs essentially from the 
variant advocated by Varadarajan (1968) and Gudder  (1970). The latter 
would postulate, in our terms, an order isomorphism between the set of all 
semiexposed faces of V § ordered by the set inclusion and the set Ex[0, e] c 
V* with the induced order. It seems that the Varadarajan formulation of 
the principle of superposition of states imposes too strong, and in this 
connection not sufficiently justified, regularity assumptions on the descrip- 
tion, forcing Ex[0, e] to be a complete lattice (Gudder, 1970). Moreover, 
the Varadarajan principle holds also for classical systems with finite number 
of pure states (cf. Gudder,  1970), what is counterintuitive. The principle of 
superposition of states should express one of the distinguishing features of 
the quantum theories of physics. That this might be the case with our (SP) 
become evident below. 

Let (V, S) be a classical convex description as defined in Section 3.1. 
Now S is a simplex, which means that for any two pure states •1, a2 ~ S 
F({a~, a2}), the semiexposed face of S generated by {al, a2} , is a simplex, 
too. Hence in F({cq, a2} ) there are no nontrivial superpositions of al  and 
a2. We conclude this section with a simple but fundamental result. 

Theorem 1. If (S, O)~ COsp then S cannot be a simplex. Moreover, 
CDsp ~ O and CDsp c~ CCD = 0 .  

6. UNCERTAINTY 

The convexity scheme followed here is probabilistic. The most typical 
probability distributions of the scheme are those defined by any instrument- 
(normalized) state pair (I, a) :  

p(I, a) :  B (R)~  [0, 1], X - > p ( I , a ) ( X ) = e ( I ( X ) ( a ) )  

Such distributions describe the idealized long-run results, recorded by the 
e detector, of the measurements I (X)  [X c B(R)] performed on the system 
in a given state a with a given experimental arrangement (instrument) I. 
In the preceding two sections we have studied the two important consequen- 
ces of the existence of the universal quantum of action h, namely, those 
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expressed in the complementarity principle and the superposition principle. 
But they do not exhaust all the consequences of the finiteness of the h. If 
the phenomena involved are of quantum nature, i.e., the actions involved 
are comparable with the quantum of action, then it is also known that there 
may appear a strong correlation between the scattering of certain measure- 
ment results--a correlation which is expressed in the uncertainty relations. 

Since the discovery of the uncertainty relations their interpretation has 
been one of the major problems in the foundation of quantum theory. These 
relations, which somehow arise from the inevitable interaction between 
measuring device and the system during the process of measurement, are 
said to indicate some "fundamental limitation": a limitation in the applica- 
bility of some classical concepts in quantum domain, a limitation in the 
definability of some concepts in quantum context, a limitation in the 
simultaneous measurability of certain observables, a limitation in the pre- 
pairing of states of a physical system, to mention only some of the best- 
known viewpoints. (For further discussion, see Busch and Lahti, 1984, 
1985.) 

In spite of the difficulties with the interpretation of the uncertainty 
relations their great importance in physics, and the foundational status of 
the uncertainty principle for quantum descriptions, is almost unanimously 
acknowledged. This is so even though the empirical support of the uncer- 
tainty principle is rather indirect. As Jammer wrote, "rarely in the history 
of physics has there been a principle of such universal importance with so 
few credentials of experimental tests" (Jammer, 1974, p. 81). 

Accepting the general view on the foundational status of the uncertainty 
principle for quantum description we shall follow Heisenberg's intuitive 
idea that " . . .  in many cases it is impossible to obtain an exact determination 
of the simultaneous values of two variables, but rather that there is a lower 
limit to the accuracy with which they can be known. . ,  this lower limit to 
the accuracy with which certain variables can be known simultaneously 
may be postulated as a law of nature. . ."  (Heisenberg, 1949, p. 3). Before 
formulating this "law of nature," the uncertainty principle, in the convexity 
scheme some further considerations are needed. 

One of the advantages of the operational quantum mechanics over the 
standard quantum mechanics lies in the fact the former utilizes a far richer 
family of observables and of effects than the latter one. The set of measure- 
ments described by standard quantum mechanics is restricted to those giving 
rise to extreme effects and thus extreme-effect-valued observables, only. 
One of the consequences of introducing "fuzziness" into the description is 
explained by the following result (Davies, 1976): If A and A' are a [0, e]- 
valued and an Ex[0, e]valued observables defining the same self-adjoint 
operator (in the Hilbertian approach), then Var(A, a ) -  Var(A', a) for any 
state a e S. Thus, as it should, fuzziness increases "uncertainty" (or disper- 
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sion or variance). Physically, this increased uncertainty is caused by the 
possible outer disturbances on the system, which are excluded in the 
standard description (cf. Ingarden, 1974; Busch, 1982; Busch and Lahti, 
1984). In addition to that, classical convex descriptions fulfill something 
like the uncertainty principle almost trivially. This is obvious, because if A 
is a simple fuzzy-valued observable defined through its range {0, a, e - a, e} 
and spectrum {0, 1} we have Var(A, a) = a(a)[1 - a(a)] .  But with the choice 
a(a) =�89 ~ S, this gives Var(A, oz) =�88 for any states a e S. 

These results indicate that in the convexity scheme the uncertainty 
principle should be formulated in terms of optimal or extreme-effect-valued 
observables. We are finally in the position to formulate the uncertainty 
principle in the convexity scheme: 

(UP) A convex description (S, O) satisfies the uncertainty principle if 
there exists at least one pair of extreme-effect-valued observables A, B 
and a positive number h, such that for any state a ~ S, for which the 
variances of A and B are well defined, the inequality 
Var(A, a ) .  Var(B, a ) -  h holds. 

Let CDup denote the family of those convex descriptions (S, O) which 
satisfy the uncertainty principle. Obviously, any Hilbertian description 
(V(H)~-, O) satisfies the principle. 

Let (S, O) ~ CCD so that ( V, S), and thus also ( V*, e) is a vector lattice. 
Identifying (V*, e) with (Ca(X), lx) (Alfsen, 1971), with X denoting the 
(compact Hausdorff) space Ex(flS) of the extreme elements of the base flS 
of V** we realize that the uncertainty principle cannot hold now as the 
extreme effects are exactly the characteristic functions of the Borel subsets 
of X. Note that S is weak* dense in flS. Thus we may again conclude the 
following: 

Theorem 1. If (S, O)c  CDup then S cannot be a simplex. Moreover, 
CDup-~ ~ and CDupN CCD = Q, 

Though there exists some disagreement on the interpretation of the uncer- 
tainty principle this principle is not so problematic from the present point 
of view. We can simply take the attitude that it is a law of Nature that only 
such states of the system can be prepared for which the product of the 
"uncertainties" of certain variables has a lower limit given by a positive 
constant h. Whether this holds or not is an empirical question. 

7. INTERDEPENDENCE OF THE PRINCIPLES 

We have now distinguished three important subfamilies CDcp, CDtn,, 
and CDsp of the family CD of all convex descriptions through formalizing 
the principles of complementarity, uncertainty, and superposition within 
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the convexity scheme. It turned out that any of  these families is disjoint 
from the family CCD of classical convex descriptions, here character- 
ized through the assumption UDM formalized as the requirement for the 
simplicial structure of the set of all normalized states of the description: 

(CDcv u CDcv w CDsp ) & CCD = Q 

Owing to the generality of  the convex scheme there is, obviously, no reason 
to expect that the assumptions CP, UP, SP, and UDM, as formalized here, 
would cover all the descriptions in CD. This conjecture is confirmed, e.g., 
by the example due to Davies (1972). Thus 

CCDw CDcvw CDupw CDsp#  CD 

We shall now briefly comment on the interdependence of the three funda- 
mental quantum principles CP, UP, and SP. To show the mutual indepen- 
dence of  these principles it suffices to iarovide examples of convex descrip- 
tions satisfying one or two of them, but not all. This method was used in 
Lahti (1981) to show the logical independence of the three principles within 
the quantum logic frame. Owing to the difference between the two 
approaches all the examples used therein are, however, not applicable in 
the present context. 

To show that neither CP nor UP implies SP one may take the state 
space V(H1G 142) associated with the linear sum H1G H: of two orthogonal 
Hilbert spaces I-I  1 and H:. Such a description refers to a quantum system 
with superselection rules. Obviously CP and UP hold here, which is not 
the case with SP. The converse results that SP implies neither CP nor UP 
are demonstrated by the example 2 in Lahti (1981). That CP does not imply 
UP can be demonstrated by a sufficiently poor  scheme, like, e.g., a convex 
scheme with a finite number of pure states. Then CP is satisfied owing to 
the lack of  sufficiently many extreme points in [0, e], whereas UP is not 
due to the compactness of S, which implies that any element in [0, e] has 
a pure state in which it takes the value 0 and unbounded observables do 
not occur. The question whether UP implies CP or not is problematic. The 
example, which was used to demonstrate (Lahti, 1981) that UP does not 
imply CP, does not work in the present scheme as any change in the set S 
of  states influences drastically the set [0, e] of effects of the description. 
Thus we lack an example of a convex description satisfying UP but not 
CP. We leave it open whether such an example exists. However, as it 
becomes evident in Section 10, the results 

C D c p n C D ~ v r  and C D c p n C D ~ p # Q  with CD ~:=CD \CD ~,  

c~ = SP, UP 
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showing that CP does imply neither SP nor UP, are sufficient to provide a 
fundamental reconstruction of the DHB quantum theories. 

8. ON UNIQUE DECOMPOSABILITY OF MIXTURES 

The lack of unicity in the decomposition of quantum mixtures into 
pure states has been emphasized as a crucial branching point between 
quantum and classical physics (see, e.g., Beltrametti and Cassinelli, 1981). 
In his convex scheme Mielnik (1974) underlined this property to the extent 
that he formulated it as one of the most general negative laws limiting the 
perception of quantum ensembles. This law, Mielnik's first principle of 
impossibility, is the following: "Having a mixed statistical ensemble of 
nonclassical objects one cannot determine uniquely its pure components 
and find out how the mixture has been prepared. Two mixtures created in 
two distinct ways by taking different collections of pure states may physically 
be indistinguishable" (Mielnik, 1974). In effect, this principle states that 
the set of  all normalized states of the description cannot form a simplex. 

In Sections 4, 5, and 6 we have considered the three principles of  the 
quantum theory in which the very root of the quantum theory, the existence 
of the universal quantum of action, manifests itself most strikingly. It turned 
out that any of these three principles implies the above negative property, 
the nonsimplicial shape of the state space. Though the lack of unicity in 
the decomposing of mixed states into pure states is an important feature 
of quantum physics, it does not suffice to characterize quantum convex 
descriptions. 

In Section 3.1 we based the notion of classical convex description on 
the requirement of unique decomposability of  mixtures, UDM, which was 
formally expressed as the requirement of S being a simplex. Thus the family 
CDuDM of those convex descriptions that satisfy UDM was identified, by 
definition, with the family CCD of all classical convex descriptions. This 
identification was justified by the fact that the convexity scheme for describ- 
ing physical systems starts with the notion of state of the system and with 
the operation of forming mixtures of states. There are, however, at least 
two other characteristics of a description which are typically classical: The 
Boolean structure of the set of all properties of a system described by the 
theory, and the nonprobabilistic, or dispersion-free, character of the descrip- 
tion. Both of these properties B and NPr, for short, can be made explicit 
in the present approach so that they can be used to single out the relevant 
subfamilies CDB and CDNpr of CD, which could form the starting point 
for classical convex descriptions, as well. Here we shall only show, with 
respect to the below given formalizations of the properties B and NPr, that 
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C D u D  M c CDB n CDNvr. In that we shall follow Bugajski (1981) where also 
the converse questions have been analyzed. 

Let ( V, S) be a convex description. The set [0, e] c V* of  all formally 
possible effects is convex and weak* compact so that the weak* closure of 
the convex hull of the set Ex[0, e] of all extreme effects equals to [0, el. 
The generality of  the ( V, S) scheme lies in the existence of a huge class of 
operations which give rise to nonextreme or fuzzy effects. Such operations 
can be interpreted to describe, e.g., some interactions of the system with 
its environment, or some possible outer disturbances on the system, or some 
inaccurate measurements on the system (cf., e.g., Ingarden, 1974; Davies, 
1976; Busch and Lahti, 1984). Thus it is the set Ex[0, e] of extreme effects, 
or some of its relevant subset gained through specifying the admissible 
operations (cf. Section 3) that could describe the possible properties of the 
system (cf. Section 9). We then say the following: 

(B) A convex description (S, O) is Boolean iff Ex[0, e] is Boolean. 

We denote by CDB the family of such descriptions. As already discussed 
in Sections 2 and 3.1, for any (S, O) ~ CCD [0, e] is a complete distributive 
lattice whose Boolean sublattice Ex[0, e] is, with a~--~a~:=e-a as the 
orthocomplementation. Hence CCD := CDuDM ~ CDB. 

The convex scheme is probabilistic, and its basic probability assertions 
are of the form e(d~a), r ~ O, a ~ S, or simply a(a),  with a c [0, el, a ~ S. 
The question then arises under which conditions the notion of  probability 
can be eliminated. This question requires again further specification. Firstly, 
as conv Ex([0, el) is dense in [0, e] it suffices to consider probability 
assertions of  the type a(a)  with a ~ Ex([0, e]). Secondly, only assertions 
a(a)  associated with pure states should be considered. But this would 
require that each state o~ can be expressed as a convex combination (count- 
able or otherwise) of  pure states, i.e., conv(Ex(S)) should be dense in S. 
Such an assumption is physically well founded. However, if this is not the 
case we can always pass to the natural compactification flS of  S in the 
second dual V** of V, which has the required property. We then say the 
following: 

(NPr) A convex description (S, O) is essentially nonprobabilistic iff a(a)  c 
{0, 1} for any extreme effect a ~ Ex([0, el) and for any pure state 
a c Ex(/3S). 

If (S, O) is nonprobabilistic then any probability assertion a(a),  a ~ [0, el, 
a ~ S, of the description can be expressed as a convex combination (count- 
able or otherwise) of 0-1 probability statements. Customarily, one say that 
a state a c S is dispersion free if[ it takes only the value 0 or 1 on the set of 
extreme effects. Hence (S, O) is nonprobabilistic if any pure state in/3S is 
dispersion free. The family of  such descriptions will be denoted by CDNp,. 
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Let (S, O) c CDuDM. Hence S, or/3S, is a regular simplex which can be 
identified as MR(X)~ for some compact Hausdorff space X (Alfsen, 1971). 
The pure states of S, or/3S, are then identified with the Dirac measures 6x, 
x c X, on X which obviously are dispersion free over the extreme effects. 
This then shows that C D u D  M c C D N P r ,  and hence 

C D u D  M c C D  B t~ C D N p  r 

The above ideas have also been used to analyze the irreducibly probabilistic 
character of quantum theory (see Lahti, 1983). 

9. PROJECTION POSTULATE 

In Section 3 we defined the standard classical description (MR(X)~-, 
ORcl) and the standard Hilbertian description (V(H)~-, O'w1) as rather 
peculiar restrictions of the corresponding operational descriptions. In the 
classical case the set ORCl of admissible operations consists of the 
operations, called there conditionalizations, of the form 

~bx: MR(X)-->MR(X), a~-->q~x(a) VXcB(X) 

such that a(~bx(a)) = Ix  a da Va c CR(X) 

whereas in the Hilbertian case the set O'w1 of admissible operations 
contained the operations of the form 

re:  V(H)-> V(H), a~-~PctP VPcP(H)  

Such operations are of very special character: They are pure [mapping pure 
states onto pure states (or to to) modulo normalization], ideal (satisfy~,ng 
the principle of minimal disturbance or least interference), and of the first 
kind (satisfying the repeatability hypothesis). In both cases the restrictions 
O-->{qSx: XcB(X)} and O-->{~bp: PeP(H)} lead to a natural one:one 
correspondences {~bx: XcB(X)}<-->B(X)cEx([0, e]) and {qSe: P c  
P(H)},~-> P(H)= Ex([0, 1]). This one:one correspondence between the dis- 
tinguished class of operations, called filters, and the distinguished class of 
effects, called propositions, of the description formalizes the possibility of 
performing ideal first-kind measurements of some "properties" of the phy- 
sical system concerned. This is the essence of the projection postulate; cf. 
FPI. To formulate this assumption in the convexity scheme the two intended 
classes of operations and effects should be defined. 

Let (S, O) be a convex description. The set Of of filters is defined as a 
sufficiently rich family of good operations in O. The qualities sufficiently 
rich and good, which grasps the qualities pure ideal and first kind, receive 
their exact meanings below: 
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Sufficiency. The set O F t  0 is sufficiently rich if 

($1) for any pure state a in Ex(S) there exists uniquely an operation 4~ 
in Oy such that e(~b~/3) = e(fl) implies/3 = a for any/3 in Ex(S);  

($2) for any operation ~ in Of there exists an operation 4 / i n  Of such that 
the resulting effects e o ~b and e o qS' are orthogonal in the sense that 
(e o qS) l = e o qS'. 

Purity. An operation ~b in O is pure if 

(P1) &a ~ [O, 1] x Ex(S) for any a in Ex(S).  

Ideality. An operation $ in O is ideal if 

(I1) e(qSa)= e(&~,a) for any a in Ex(S),  with c~'= e(qSa) -1 qSa and qS,,, 
as in (S1). 

First-Kindness. An operation $ in O is of  the first kind if 

(F1) e(&a)= e(oe) implies qSa = a for any a in Ex(S);  
(F2) e(q52a) = e(q~a) for any a in Ex(S). 

The properties (S1) through (F2) which define the set Of of  filters has 
already been discussed in FPI, where also references to some other relevant 
works can be found. Owing to the differences between the present approach 
and the one employed in FPI some remarks are, however, called for. 

As noted in FPI, the first sufficiency condition (S1) expresses the 
common belief that any pure state a can be produced by a particular 
selection or filtering process qS~, which under the assumptions (F1) and 
(F2) receives the form: ~b~/3 ~ e(qS~/3)a for any/3 in Ex(S). In the present 
scheme for any operation q~ in O there exists an operation ~b' in O such that 
the effects e o th and e o ~ '  resulting from the two operations are orthogonal. 
With the second sufficiency condition ($2) one guarantees that whenever 
an effect a results from a "good"  operation then also its "negat ion" a • 
results from a "good"  operation. 

The purity (P1) of  an operation means simply that it takes a pure state 
onto a pure state with a possible loss in strength. As a pure state may be 
interpreted as a maximal- information state (see, e.g., Beltrametti and 
Casinelli, 1981), a pure operation leaves the system in a maximal-informa- 
tion state whenever it was in such a state. 

With the so-called ideality assumptions one usually aims at minimaliz- 
ing the influences on the states caused by an operation performed on the 
system. In addition to the purity condition (P1) and the first-kindness 
conditions (F1) and (F2), (I1) aims at that. It claims that an ideal ~b maps 
any pure state a onto the closest to a eigenstate of  ~b, disturbing thus the 
system to a minimal extent. 
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Of the two first-kindness conditions (F1) and (F2), (F1) claims that if 
~b does not lead to a detectable effect when performed on the system in a 
pure state a then, provided that ~b is "good enough," it does not alter the 
state of  the system, either. According to (F2), a repeated application of  a 
good operation does not lead to a new effect. 

As an immediate consequence of the defining properties of  filters, we 
note that they are not only weakly repeatable [e(~b2ot)= e(~ba) for any 
a ~ Ex(S)] but also repeatable [~bEa = ~ba for any ot ~ Ex(S)] and even 
idempotent  [~h 2 = ~b] provided that any mixed state in S can be decomposed 
into its pure components  in Ex(S). Moreover filters satisfy the most usual 
ideality requirement: if a good operation ~b~ is performed on the system in 
a pure state a which is an eigenstate of  a good operation th2 [i.e., e(~bECe ) = 
e (a ) ]  which commutes weakly with ~b~ (i.e., 4'1 ~ ~b2 and ~b2 ~ q~l lead to the 
same effect), then t~l leaves the system in a state which is still an eigenstate 
of q~2- 

The set L of propositions of a convex description (S, O) is defined as 
the set of  all extreme effects a in Ex[O, e] with nonempty certainly-yes- 
domain a 1 := {a c Ex(S): a(a) = 1} together with the null effect O: 

L = { a ~ E x ( [ 0 ,  e]): a = 0  or a 1 # O }  

Thus propositions are exactly those extreme effects which, if they are 
possible [i.e., a ( a ) r  0 for some a in Ex(S)],  can also be actualized [i.e., 
there exists an a in Ex(S) such that a(a) = 1]. As the "fuzziness" inherent 
in an (S, O) description may be interpreted as resulting from the possible 
outer disturbances on the system, the restriction to extreme effects guarantees 
that a proposit ion could describe a realizable property of  the system. 

For a given operational description (S, O) the set Of of filters may or 
may not exist, and the set L of propositions may be trivial {0, e}. However, 
for any ~b in Of, d~ ~ 0, the resulting effect e o ~b has a nonempty certainly-yes- 
domain (e o ~b) ~, and for any a in L, a ~ O, one can associate through the 
Sasaki-projection-construction (see FPI) a filter ~ba such that the resulting 
effect e o ~ba equals to a. Following FPI the projection postulate  is now 
expressed as a requirement for a natural one-to-one correspondence between 
the distinguished sets O r and L of filters and propositions. However, in the 
present case, it appears  to be reasonable to distinguish between the projec- 
tion postulate and its strong variant. 

(PP) An operational description (S, O) satisfies the projection postulate 
iff (1) the set O of operations admits a subset Of of  filters, and (2) there 
is a natural one-to-one correspondence I between the sets Of and L with 
the following property: a(a) = e(I(a)a) for every a ~ L and a ~ Ex(S).  
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(SPP) An operational description (S, O) satisfies the strong form of the 
projection postulate iff it satisfies the projection postulate, and, in addition, 
(3) the set O s of filters is the admissible set. 

Let CDpp and CDsvP be the two corresponding families of convex 
descriptions. 

Though the projection postulate PP is very restrictive from the general 
formal point of view, it is, however, far less restrictive than its strong variant 
SPP. We note that any operational classical and any operational Hilbertian 
description, as discussed above satisfies PP. But only the corresponding 
restricted standard descriptions satisfy SPP. Also from the physical point 
of view PP is rather plausible, which is not the case with SPP. The projection 
postulate guarantees the existence of the important class of operations 
associated with the pure, ideal, first-kind measurements, but it does not 
restrict the theory to deal with such measurements only, as does its strong 
form. We recall also that the major critique against the von Neumann-Liiders 
projection postulate is not so much against the existence of such measure- 
ments described by the postulate but rather against the apparently erroneous 
assumption that they exhaust all the physically relevant measurements. 

10. T H E  D H B  T H E O R Y  A N D  A M O D E L  

We shall now return to the problem of characterizing quantum convex 
descriptions. We accept the view that these descriptions are to be based 
more or less directly on the physical fact of the existence of the universal 
quantum of action symbolized by the Planck constant (of. Lahti, 1980b). 
The important consequences of this fact are most properly reflected in the 
complementarity principle, the uncertainty principle, and in the superposi- 
tion principle. This then leads us to the following definition of quantum 
convex descriptions: 

QCD :-- CDcpu CDspu CDup 

Recall that QCDc~CCD--Q. Moreover, classical and quantum convex 
descriptions do not exhaust convex schemes in CD. 

Owing to the foundational status of the three quantum principles we 
shall, following FPI, call the convex descriptions in 

CDDHB :---- CDcp c~ CDse c~ CDup 

as the DHB quantum theories. Clearly, any standard Hilbertian description 
(V(H) 3, * Ogwx) is such. More interesting is, however, the fact that also any 
operational Hilbertian description (V(H)~-, O) is a DHB theory. It is clear 
that any ( V(H)I, O) satisfies both the uncertainty principle and the superpo- 
sition principle. That it satisfies also the complementarity principle can be 
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seen from the following. If  P, Q e Ex([0, I]) = P(H) are such that their meet 
in P(H) is zero then their meet in [0, I] is zero, too. This is because the set 
{Ae [0, I]: A -  P} equals to the set {AP: 0 -  < A --< 1} for any P in Ex([0, I]). 
Here [0, I]  := {A e Ls(H): 0 -< A -< I} and P(H) := {Pc Ls(I-I): p2 = p} denote 
the set of all effects of the operational Hilbertian description and the 
standard Hilbertian description, respectively. As the observables of the 
standard description are Ex([0, I]) valued, we see that complementary 
observables of the standard Hilbertian description, like position and 
momentum, are complementary also in the more general operational Hilber- 
tian description. This shows that the operational Hilbertian descriptions 
are relevant (i.e., with actual applications; cf. Section 3.2) nonstandard (i.e., 
not standard Hilbertian) models for, or examples of, the DHB theories. 

It has been argued elsewhere (Lahti, 1983, 1984) that the notion of 
complementary physical quantities presupposes the possibility of perform- 
ing ideal first-kind measurements of such quantities. This is to say that 
whenever we have a convex description (S, O) which satisfies the com- 
plementarity principle, i.e., (S, O) e CDcp, it should also satisfy, on physical 
grounds, the projection postulate, i.e., (S, O) e CDpp. Though the projection 
postulate, as formalized in Section 9, is not very restrictive from the physical 
point of view it anyway implies very strong structural properties for a 
description (S, O) satisfying it. In effect, it allows one to infer that the set 
L of propositions of the description (S, O) e CDp~ possesses the structure 
of a complete atomic lattice with the covering property (cf. Bugajska and 
Bugajski, 1973; FPI; Lahti, 1983). But if (S, O)e  CDcvn  CDpp L cannot 
be Boolean (cf. Section 4) so that the celebrated Piron-Maclaren representa- 
tion theorem (Piron, 1976) allows one to identify (modulo the question of 
scalar field) the set L of propositions of the description (S, O) with the set 
P(H) of projections on a Hilbert space H with dimension dim(H)->3. 
Reconstructing then the description (S, O) on the basis that L ~ P(H) we 
find that (S, O ) ~  (V(H) +, O) for the Hilbert space H. Thus these consider- 
ations strongly suggest that the important families of quantum descriptions 
CDDHB, C Dc p~  CDpp, and CDoHQ: = {(S, O) E CD: S = V(H)~-, H a Hilbert 
space with dim(H)-> 3} are essentially the same: 

The Dirac-Heisenberg-Bohr quantum theories are the operational Hil- 
bertian descriptions which can essentially be based on the fundamental 
complementarity principle and on the measurement theoretical idealiz- 
ation called the projection postulate. 

Finally, we wish to emphasize that it is due to the great generality of 
the convexity scheme that a distinction between the projection postulate 
and its stronger variant became possible, and that it is only the projection 
postulate, in its weak form, which was applied above. 
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Convex descriptions 

CD nonclassical_ 

/ ccp : = CDUD M 

CDsp CDup CDcp / 

~ C P A P P  C 

C--~DoH Q 

i 
CDsH Q 

Fig. 1. A schematic representation of the interrelations of some convex descriptions. 

Figure 1 above summarizes schematically the main results of this 
investigation in a set-theoretical form. The line connecting two families of 
descriptions indicate that the lower family is a subfamily, not necessarily 
a proper one, of the upper family. In that CD~uDM denotes the family 
CD\CDuDM. Other families of convex descriptions appearing in that figure 
have been defined throughout the text. 
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